Commutative Property of Addition

Let's model 6+2.

Adding like terms together, we can see that the total is 8.

What if we modeled 2+6 instead?

Surprise! The total is again 8 !
8
8

The models above demonstrate the commutative property of addition: the order in which numbers are added together does not change the sum! In other words:

$$
a+b=b+a .
$$

Model 3+5 and 5+3, and show that you get the same result!

Commutative Property of Multiplication

Let's consider the expression 3×2. As we saw in the multiplication section, this can be modeled as two groups of three:

Now what if the expression was written as 2×3 ?

The commutative property applies when you want to change the order of the numbers that you are multiplying. Check out the relationship:

$3 \times 2=$
2×3

$3 \times 2=$
Three groups of two

$2 \times 3=$ Two groups of three

The models on the previous page demonstrate the commutative property of multiplication: the order in which numbers are multiplied does not change the product. In other words:
a X
Model 2×4, using either circles or bars.
\square

Now model 4×2, using either circles are bars.

Show that the models of 2×4 and 4×2 are related.
Hint: you can use the strategies on the previous page!

