Division

$$
6 \div 3
$$

We start with 6 circles

We divide them into 3 piles

There are two circles in each pile, so our answer is 2

Practice: Model using circles

$10 \div 5$	$8 \div 4$
000000000	
2	
$12 \div 4$	$12 \div 3$

$6 \div 3$

We start with a 6 bar

We divide the bar into 3 parts
We figure out how big each section is

In this problem, each
bar is of size 2 . So our answer is 2 !

Practice: Model using bars

$10 \div 5$	$8 \div 4$
$\|1\| 10 \mid$	
$2\|2\| 2\|2\| 2$	
2	$12 \div 3$
$12 \div 4$	

Another Way of Viewing Division!

$$
\begin{array}{lll}
10 \div 2=? & \longleftarrow & \text { What is } 10 \text { divided by } 2 ? \\
2 \times ?=10 & \longleftarrow
\end{array} \begin{aligned}
& \text { How many 2's do we add to have } \\
& 10 ?
\end{aligned}
$$

These two equations are asking the same question!

Let's model $2 \mathrm{x} ?=10$
We use ... to show that we are adding up an unknown number of 2 blocks

Ahhh the ? is 5 !
It takes five 2 blocks to make 10.

10

Practice: Model using bars

$\begin{gathered} 20 \div 5 \\ \frac{5 \times ?=20}{5 ?} \\ \frac{50}{4} \end{gathered}$	$8 \div 4$
$12 \div 4$	$12 \div 3$
$40 \div 10$	$100 \div 4$

